Unsupervised clustering on dynamic databases

نویسندگان

  • Dimitris K. Tasoulis
  • Michael N. Vrahatis
چکیده

Clustering algorithms typically assume that the available data constitute a random sample from a stationary distribution. As data accumulate over time the underlying process that generates them can change. Thus, the development of algorithms that can extract clustering rules in non-stationary environments is necessary. In this paper, we present an extension of the k-windows algorithm that can track the evolution of cluster models in dynamically changing databases, without a significant computational overhead. Experiments show that the k-windows algorithm can effectively and efficiently identify the changes on the pattern structure. 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

Online clustering via finite mixtures of Dirichlet and minimum message length

This paper presents an online algorithm for mixture model-based clustering. Mixture modeling is the problem of identifying and modeling components in a given set of data. The online algorithm is based on unsupervised learning of finite Dirichlet mixtures and a stochastic approach for estimates updating. For the selection of the number of clusters, we use the minimum message length (MML) approac...

متن کامل

Identification of Power Stripping Resources with Fuzzy Cluster Dynamic Approach (Case Study: West Azerbaijan Province)

Reducing electric power theft is a significant part of the potential benefits of implementing the concept of smart grid. This paper proposes a data-based approach to identify locations with unusual electricity consumption. The new distance-based method classifies the new data as violator costumers, if their distance is long to the primary consumption data. The proposed algorithm determines the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005